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Laser Powder Bed Fusion (L-PBF)
• Advanced manufacturing technique
• Freeform fabrication/complex shape capability
• Suitable for difficult to machine/fabricate materials
• Produces high levels of granular roughness/surface waviness
• Commonly produces near surface porosity

Figure 1: (A) Schematic representation of traditional contour scanning strategies 6; (B) & (C) Micrographs of a 
EBM Ti-6Al-4V surface showing significant melt-pool derived roughness/waviness; (D) & (E) Micrographs of a 
L-PBF Ti-6Al-4V samples showing contour-hatch interface porosity at ~160 µm depth; (F) & (G) Micrographs 
of etched cross-sections of L-PBF AlSi10Mg samples showing the microstructure of an orthogonal cut (F), and 
a parallel cut (G) along the build direction7; (H) & (I) Micro X-ray CT Scan composites showing subsurface 
porosity of L-PBF A6061-R2 (H), and IN-625 (I); (J) Micrograph of L-PBF Ti-6Al-4V showing significant granular 
roughness and surface waviness; and (K) Micrograph of L-PBF 17-4 PH showing defined laser-based layer lines
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AM GRCop-42 Examples: (left) partially fused cooling 
channel inlet vanes & (right) as-printed roughness on 
inlet vanes
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Figure 2: (A) L-PBF GRCop-42 Combustion Chamber3; (B) Micrograph and roughness measurements of as-
printed L-PBF GRCop-42; (C) & (F) Micrographs of as-printed L-PBF GRCop-84 channels at 100x (C), and 200x 
(F); (D) & (E) Micrographs of as-printed GRCop-42 channels showing partial closure due to excess powder 
fusion (D), and high as-printed granular roughness (E)

GRCop-84 & GRCop42
• Novel dispersion strengthening copper alloys (Cr2Nb) 1

• Stable up to at least 800° C1

• Maintains tensile strength up to/above 700 ° C1

• Low thermal expansion  lower creep stress & smaller LCF 
strain ranges  increased life vs. other Cu alloys1

• Demonstrated printability via L-PBF1,3

• Exhibit equal or greater as-printed roughness & near surface 
porosity versus more common L-PBF alloys

• Powder removal/blockage from complex geometries can be 
an issue

B C

D E F

A

Novel Surface Finishing Approach for 
Additively Manufactured RF Components 

for Fusion Reactor Applications
Dr. Agustin DiazA, Justin MichaudA, Patrick McFaddenA

Dr. Stephen WukitchB, Dr. Andrew SeltzmanB
A REM Surface Engineering, B MIT Plasma Science Fusion Center

High Field Side Lower Hybrid Coupler
• Potential for higher current drive efficiency & better current 

profile control2
• Cu alloys are ideal for RF launchers vs. steel or Ni-Cr 

superalloys4

• L-PBF is advantageous for fabrication of enclosed structure 
and large material removal/thin-wall component 
requirements for these applications4

• Low roughness surfaces (~0.3 µm Ra) are required to achieve 
desired RF performance4,5

Figure 4: (A) & (B) Schematic representation Lower Hybrid Current Drive (LHCD) Launcher4,5; (C) L-PBF 
GRCop-84 Poloidal Splitter (courtesy of MIT PSFC)

A

B

C

Novel Surface Finishing Requirement
• Traditional Methods are Inadequate

• Chemical Milling = lacks requisite roughness reduction
• Abrasive Mass Finishing = not viable on interior/internal surfaces
• Machining = line-of-sight limitations
• Electropolishing = highly non-uniform material removal through 

internal surfaces
• Novel Approach

• Individual and/or combinatory application of Chemical Polishing 
(CP) and Chemical-Mechanical Polishing (CMP)

• CP = chemical dissolution with enhanced planarization capabilities
• Geometrically agnostic & capable of substantial roughness 

reduction; some waviness may remain
• CMP = applicable to complex internal geometries & capable of 

generating near-mirror surface roughness
• Utilizes self-limiting, self-assembling monolayer (SAM) reaction 

to lower the required force to affect material removal
• Exceptional planarization capability; can eliminate waviness

Figure 3: (A) Roughness reduction versus surface material removal graph for L-PBF GRCop-42 processed via CP; (B) & (C) 
Micrographs of L-PBF GRCop-42 after CP showing elimination of granular roughness and substantial planarization; (D) L-
PBF GRCop-84 Waveguide after CP+ CMP (courtesy of MIT PSFC)
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Figure 5: (A) Hot fire testing of 7K LLAMA rocket engine with L-PBF GRCop-42 combustion chamber with 
REM’s CP+CMP surface finishing8; (B) 7K LLAMA combustion chamber (courtesy of NASA MSFC); (C) L-PBF 
GRCop-42 as-printed (top) and after CP cooling channels; (D) Process outline of the CMP process
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